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1 Introduction

The work described in this paper was conducted as part of the NASA funded project, Dis-
covery of Changes from the Global Carbon Cycle and Climate System Using Data Mining,
which was part of the Intelligent Systems (NRA2-37143) program. The goal of this project
was to better understand global scale patterns in biosphere processes, especially relationships
between the global carbon cycle and the climate system. During this project, we developed
new data analysis and knowledge discovery techniques to investigate changes in the global
carbon cycle and climate system. This research has resulted in numerous joint publications
in archival journals and major conferences [4, 10, 17-21, 23-28, 31-34], as well as two NASA
press releases [14, 15].

More specifically, in this paper, we describe a novel clustering technique that we developed
to identify regions of uniform behavior in spatio-temporal data. The clusters produced by
this method are useful in discovering climate indices! because they identify significant regions
of the ocean or atmosphere where the behavior is relatively uniform over the entire area.
Some of the discovered clusters correspond to known climate indices, while other clusters are
variants of known indices that appear to provide better predictive power for some land areas,
and still other clusters may represent potentially new Earth science phenomena. Although
this application of clustering to Earth science data has proven useful, many challenges remain.
After a quick description of the data and our clustering work, we briefly describe one of these
challenges, namely, the need for clusters that can represent dynamic phenomena such as those
associated with climate indices.

2 Earth Science Data

The types of data shown in Figure 1 are representative of the data considered in this project,
i.e., the basic data elements are individual co-registered cells in grids that cover the entire sur-
face of the earth with resolutions between 0.25 km and 50 km. (Land

*Department of Computer Science and Engineering, University of Minnesota,
{steinbac, sboriah, kumar}@cs.umn.edu.

"Department of Computer Science and Engineering, Michigan State University, ptan@cse.msu.edu

California State University, Monterey Bay, sklooster@gaia.arc.nasa.gov

SNASA Ames Research Center, cpotter@mail.arc.nasa.gov

ITo analyze the effect of the oceans and atmosphere on land climate, Earth Scientists have developed
climate indices, which are time series that summarize the behavior of selected regions of the Earth’s oceans
and atmosphere.
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Figure 1: A simplified view of the
problem domain.

3 Progress: Clustering to Discover Climate Indices

Our interest in climate indices [9] arises from a desire to improve our understanding of tele-
connections involving ocean temperature/pressure and terrestrial carbon flux. In the past,
Earth scientists have used observation and, more recently, eigenvalue analysis techniques,
such as principal components analysis (PCA) and singular value decomposition (SVD), to
discover climate indices [29]. These techniques are only useful for finding a few of the
strongest signals and impose a condition that all discovered signals must be orthogonal to
each other. We have developed an alternative methodology [26-28] for the discovery of
climate indices that overcomes these limitations and is based on clusters that represent ge-
ographic regions with relatively homogeneous behavior. The centroids of these clusters are
time series that summarize the behavior of these geographical areas.

Figure 2 shows the clusters produced by shared nearest neighbor (SNN) clustering [3]
of sea level pressure data for the period 1958-1998 [26-28]. Many pairs of clusters in this
clustering are highly correlated with the known climate indices. For example, clusters 13
and 20 are highly correlated with the Southern Oscillation Index (SOI), clusters 10 and 18
are correlated with the Arctic Oscillation index (AO), and clusters 7 and 10 are correlated
with the North Atlantic Oscillation index (NAO).

We have also investigated clusters of SST. Four of these clusters are very highly correlated
(correlation > 0.9) with well-known climate indices, e.g., NINO 142, NINO 3, NINO 3.4,
and NINO 4, and were located in approximately the same location as where these indices
are defined [26-28]. The SST clusters that are less well correlated with known indices
may represent new Earth science phenomena or weaker versions or variations of known
phenomena. Indeed, some of these cluster centroids provide better coverage, i.e., higher
correlation to land temperature, for some areas of the land. This is illustrated in Figure 3,
which compares the El Nino indices to that of cluster 62 (close to Brazil). Areas of yellow
indicate where cluster 62 has higher correlation, while areas of blue indicate where the El
Nino indices have higher correlation. Observe that cluster 62 outperforms the known indices
for some areas of the land. The overall coverage of cluster 62 (measured in area weighted
correlation) is similar to that of an El Nino based index, such as NINO 142, NINO 3, etc.
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Figure 2: 25 ocean clusters produced by
SNN clustering of sea level pressure data
for 1958-1998.

4 Challenge: Dynamic Clusters

Most of the well known climate indices are based on me-
teorological data collected at fixed land stations. For
example, NAO [7], which refers to swings in the atmo-
spheric sea level pressure difference between the Arctic
and the subtropical Atlantic, is computed as the nor-
malized difference between SLP at a pair of land sta-
tions in these two regions of the North Atlantic Ocean.
However, the phenomenon underlying NAO occurs at
irregular intervals, and the exact location at which the
phenomenon occurs varies over time. Specifically, Por-
tis et al [16] showed that the high and low pressure
fields in the North Atlantic are mobile from month
to month. (See Figure 4, where the locations of the
high/low pressure fields are marked by month and the
land stations are marked by stars.) Therefore, a given
land station may not always be in the right location to
collect data. A climate phenomenon can be captured
much more accurately by having a notion of a dynamic
cluster that represents a dynamic phenomenon, based
on the satellite data for the entire region.

To extend the modeling of climate phenomena using
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Figure 3: Comparison of correlation of
Cluster 62 vs. El Nino Indices to land tem-
perature.

Figure 4: Mobile NAO

clustering, it is necessary for us to investigate novel clustering approaches that can find
clusters over different time periods and associate corresponding clusters from the different
clusterings in order to determine how different “phases” of a dynamic cluster might move
in space and/or expand or contract in extent. The successful development of techniques for



dynamic clustering will provide better insight as to how climate indices and their impact on
land climate change over time.

Previous Work Some spatio-temporal clustering approaches view the data as a collec-
tion of global snapshots taken at different time periods [5, 6, 11]. For each snapshot, spatial
clustering [2, 13] is performed to group together regions that have similar values in their do-
main attributes. Because the data is clustered independently at each snapshot, one potential
limitation of this approach is the lack of contiguity between clusters found at different time
periods. Visualization techniques are therefore needed to aid the interpretation of clusters
5, 6].

Another approach for finding dynamic clusters assumes that the objects to be clustered
are distinguishable from one another based on their unique identifiers (e.g., the RFID tags
of animals or IP addresses of mobile devices). As the locations of these objects change over
time, a group of closely situated objects that move together for an extended period of time is
called a moving cluster. There are two common strategies for creating and maintaining these
moving clusters. The first strategy is to cluster the objects at each snapshot independently
using a similarity measure defined in terms of their trajectory profile (spatial coordinates
and velocities) [11]. The correspondence between clusters in different time periods is then
established by measuring the fraction of objects the clusters share. In the second approach,
spatial clustering is initially applied to the data in the first snapshot. The clusters are then
updated incrementally by taking into account changes due to moving objects that leave or
join the cluster as time progresses [12].

Also, signal processing techniques, such as Kalman filtering [8] can be used to track
moving objects [1]. However, the application of such approaches may be limited because
(i) the time intervals between successive observations can be large, and (ii) objects can
appear and disappear between successive time frames. Indeed, the problem of dynamic
clusters in Earth science data may need techniques that are more related to those creating
a correspondence of clusters between two or more different clusterings of the same data [30].

5 Conclusion

We briefly described our current progress in applying clustering to find climate indices and
discussed one of the challenges still remaining. We plan to investigate several approaches
to modeling dynamic clusters, including ones that take into account domain specific factors
such as seasonality, land cover, and geographical boundaries. Other challenges that need to
be addressed include those common to most clustering algorithms, such as determining a
strategy for handling outliers, parameter initialization, and the need to scale to large data
sets.
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