Knowledge Discovery from Disparate Earth Data Sources

Doina Caragea and Vasant Honavar

Motivation: Collaborative and Interdisciplinary e-Science

Available: large amounts of data in many application domains (e.g., global change and terrestrial ecology).

Opportunities: share data and findings between scientists working on related problems.

Challenges: large amounts of data; heterogeneous structure; different ontological commitments; constraints imposed by autonomous data sources.

Needed: knowledge discovery from large, autonomous, distributed and semantically heterogeneous data sources according to a user view.

Traditional Machine Learning Algorithms – centralized access to data

Learning Classifiers from Data Revisited

Sufficient Statistics

A statistic $s(D)$ is called a sufficient statistic for a parameter θ if $s(D)$ provides all the information needed for estimating the parameter θ from data D. We are interested in minimal sufficient statistics.

A statistic $s(D,h)$ is called a sufficient statistic for the refinement of a hypothesis h_i into h_{i+1} if there exists a refinement algorithm R that accepts h_i and $s(D,h)$ as inputs and outputs h_{i+1}.

Sufficient Statistics

Learning from Distributed, Semantically Heterogeneous Data

User Ontology

Mappings from O_1 ... O_K to O_U

Schema level:

Temperature: D_1 ≡ T_{1}, WindSpeed: D_1 ≡ WS_{1},
Outlook: D_1 ≡ O_{1}

User Ontology

Temperature: D_{1}, WindSpeed: D_{1},
Outlook: D_{1}

Ontologies

An ontology is a specification of objects, categories, properties and relationships used to conceptualize a domain of interest. Hierarchies (e.g., isa hierarchies) are a common type of ontologies. Hierarchies can be seen as orderings over a set of terms. Types of attributes that describe a data set can be defined as a hierarchical ontology.

Ontology-extended data sources

Let $A_1, A_2, ..., A_n$ be the attributes of a data source and $\tau_1, \tau_2, ..., \tau_n$ their types.

We say that $D=(D,S,O)$ is an ontology-extended data source if D is a data set, O is an ontology describing the content of the data D, $S=\{A_1, A_2, ..., A_n\}$ is the data source schema and the following condition is satisfied: $D \subseteq \tau_1 \times \cdots \times \tau_n$

User view

A user view with respect to a set of ontology-extended data sources is given by a user schema and ontology and a set of semantic correspondences from data source meta-data to user meta-data.

Semantic correspondences

<table>
<thead>
<tr>
<th>Schema level:</th>
<th>Ontology level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature: D_1 ≡ T_{1}</td>
<td>Rainy: D_1 ≡ Rain: D_1</td>
</tr>
<tr>
<td>WindSpeed: D_1 ≡ WS_{1}</td>
<td>Sunny: D_1 ≡ NoPrec: D_1</td>
</tr>
<tr>
<td>Outlook: D_1 ≡ O_{1}</td>
<td>Sunny & Cloudy: D_1 ≡ NoPrec: D_1</td>
</tr>
<tr>
<td></td>
<td>Rainy: D_1 ≡ LightRain: D_1</td>
</tr>
<tr>
<td></td>
<td>Snow: D_1 ≡ Snow: D_1</td>
</tr>
</tbody>
</table>

INDUS: An Ontology-Based Approach to Information Integration and Knowledge Discovery from Distributed, Semantically Heterogeneous, Autonomous Data Sources

INDUS main features

- A clear distinction between data and the semantics of the data: makes it easy to define mappings from data source ontologies to user ontologies
- User-specified ontologies: each user can specify his or her ontology and mappings from data source ontologies to the user ontology; there is no single global ontology.
- A user-friendly ontology and mappings editor: this can be easily used to define ontologies and mappings in a repository.
- Knowledge acquisition capabilities: machine learning algorithms can be easily linked to INDUS, making it an appropriate tool for information integration as well as knowledge acquisition tasks.

INDUS prototype: web address

http://www.cild.iastate.edu/software/indus.html

Acknowledgements: This work is supported in part by grants from the National Science Foundation (IIS 0219699), and the National Institutes of Health (GM 066387) to Vasant Honavar.