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Short Description of Wildfire Project

• Automated Wildfire Detection (and Prediction)
through Artificial Neural Networks (ANN)

– Identify all wildfires in Earth-observing satellite images 
– Train ANN to mimic human analysts’ classifications
– Apply ANN to new data (from 3 remote-sensing 

satellites:  GOES, AVHRR, MODIS)
– Extend NOAA fire product from USA to the whole Earth
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NOAA’S HAZARD MAPPING SYSTEM
NOAA’s Hazard Mapping System (HMS) is an interactive processing system that 
allows  trained satellite analysts to manually integrate data from 3 automated fire 
detection algorithms corresponding to the GOES, AVHRR and MODIS sensors. The 
result is a quality controlled fire product in graphic (Fig 1), ASCII (Table 1) and GIS 
formats for the continental US. 

Figure – Hazard Mapping System (HMS) Graphic Fire Product  for day 5/19/2003



4

OVERALL TASK OBJECTIVES
To mimic the NOAA-NESDIS Fire Analysts’ subjective
decision-making and fire detection algorithms with a 
Neural Network in order to:

remove subjectivity in results
improve automation & consistency
allow NESDIS to expand coverage globally

Sources of subjectivity in Fire Analysts’ decision-making:
Fire is not burning very hot, small in areal extent                  
Fire is not burning much hotter than surrounding scene
Dependency on Analysts’ “aggressiveness” in finding fires
Determination of false detects
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OLD FORMAT                                                      NEW FORMAT  (as of May 16, 2003)
Lon,       Lat                          Lon,     Lat,        Time,       Satellite,          Method of Detection
-80.531, 25.351 -80.597,  22.932,    1830,      MODIS AQUA,    MODIS
-81.461, 29.072 -79.648,  34.913,    1829,           MODIS,            ANALYSIS
-83.388, 30.360 -81.048,  33.195,    1829,           MODIS,            ANALYSIS
-95.004, 30.949 -83.037,  36.219,    1829,           MODIS,            ANALYSIS
-93.579, 30.459 -83.037,  36.219,    1829,           MODIS,            ANALYSIS
-108.264, 27.116 -85.767,  49.517,    1805,   AVHRR NOAA-16,  FIMMA
-108.195, 28.151 -84.465,  48.926,    2130,       GOES-WEST,       ABBA
-108.551, 28.413 -84.481,  48.888,    2230,       GOES-WEST,        ABBA
-108.574, 28.441 -84.521,  48.864,    2030,       GOES-WEST,        ABBA
-105.987, 26.549 -84.557,  48.891,    1835,      MODIS AQUA,       MODIS
-106.328, 26.291 -84.561,  48.881,    1655,     MODIS TERRA,      MODIS
-106.762, 26.152 -84.561,  48.881,    1835,      MODIS AQUA,       MODIS
-106.488, 26.006 -89.433,  36.827,    1700,     MODIS TERRA,       MODIS
-106.516, 25.828 -89.750,  36.198,    1845,            GOES,                ANALYSIS

Hazard Mapping System (HMS) ASCII Fire Product
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GOES CH2 (3.78 - 4.03 μm) – Northern Florida  Fire

2003: Day 126 , –82.10 Deg West Longitude,  30.49 Deg North Latitude
File: florida_ch2.png
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Zoom of GOES CH2 (3.78 - 4.03 μm) – Northern Florida  Fire

2003:Day 126, –82.10 Deg W Long,  30.49 Deg N Lat 

Local minimum in vicinity of core pixel used as fire location.  

File: florida_fire_ch2_zoom.png                        File: florida_ch2_zoom.png



8

NOAA-NESDIS FIRE DETECTION SYSTEM
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SIMPLIFIED DATA EXTRACTION 
PROCEDURE
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DECISION REGIONS AND BOUNDARIES FOR HIGHLY 
IDEAL SCATTER PLOT CLUSTERING PATTERNS
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Scatter Plot of Background-Subtracted GOES CH 1 vs. CH 2

Fire (lower) and non-fire (upper) separation of clusters 
2003: June 2             Northern Florida        File: scatter_fires12.png 

(GOES CH1, CH2, CH4 are input to neural network) 
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Scatter Plot of Background –Subtracted GOES CH 2 vs. CH 4

Fire (left) and non-fire (right) separation of clusters 
2003: June 2       Northern Florida           File:scatter_fires22.png

(GOES CH1, CH2, CH4 are input to neural network) 
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Neural Network Configuration
for Wildfire Detection Neural Network
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Typical Error Matrix
(for MODIS instrument)
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Typical Measures of Accuracy
• Overall Accuracy                   =  (TP+TN)/(TP+TN+FP+FN)
• Producer’s Accuracy (fire)      =   TP/(TP+FN)
• Producer’s Accuracy (nonfire) =   TN/(FP+TN)
• User’s Accuracy (fire)             =   TP/(TP+FP)
• User’s Acuracy (nonfire)       =   TN/(TN+FN)

Accuracy of our NN Classification
• Overall Accuracy                   =   92.4%
• Producer’s Accuracy (fire)      =   89.9%
• Producer’s Accuracy (nonfire) =   94.7%
• User’s Accuracy (fire)             =   94.2%
• User’s Acuracy (nonfire)       =   90.7%
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